BackgroundDeep venous thrombosis (DVT) of lower extremities is a common thrombotic disease, occurring either in isolation or as a complication of other diseases or procedures. MiR-21 is one of important… Click to show full abstract
BackgroundDeep venous thrombosis (DVT) of lower extremities is a common thrombotic disease, occurring either in isolation or as a complication of other diseases or procedures. MiR-21 is one of important microRNAs which play critical role in various cellular function. This study aim to determine the effect of miR-21 on endothelial progenitor cells (EPCs) and its role in predicting prognosis of DVT.MethodsEPCs was isolated from DVT models and control subjects. miR-21 expression was confirmed by RT-PCR. Potential target mRNA was predicted by bioinformatics analysis. EPCs biological functions were examined by CCK-8 and tube formation assay. Besides, miR-21 expression was determined in DVT patients to investigate the correlation between miR-21 expression and prognosis of DVT. Cox proportional hazard regression analyses were also performed to reveal the risk factors associated with prognosis.ResultsHere, we found miR-21 was downregulated in EPCs of DVT model rats. Increased miR-21 expression promoted proliferation and angiogenesis of EPCs. Moreover, we demonstrated that FASLG was a target of miR-21 and revealed that FASLG knockdown inhibited function of EPCs. Upregulation of miR-21 led to thrombus resolution in a rat model of venous thrombosis. In addition, lower expression level of miR-21 in DVT patients was associated with an increase of recurrent DVT and post thrombotic syndrome (PTS). Furthermore, Cox proportional hazard regression analyses demonstrated miR-21 expression level as an independent predictor of recurrence of DVT.ConclusionsOur data revealed a role of miR-21 in regulating biological function of EPCs and could be a predictor for recurrent DVT or PTS.
               
Click one of the above tabs to view related content.