LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sex-related differences of early cardiac functional and proteomic alterations in a rat model of myocardial ischemia

Photo from wikipedia

Background Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses,… Click to show full abstract

Background Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses, mitochondrial proteins, extracellular remodeling and estrogen-mediated cardioprotective signaling pathways related to post-ischemic recovery, which were associated with better cardiac functional outcomes in females. We aimed to investigate the early, sex-specific functional and proteomic changes following myocardial ischemia in an unbiased approach. Methods Ischemia was induced in male (M-Isch) and female (F-Isch) rats with sc. injection of isoproterenol (85 mg/kg) daily for 2 days, while controls (M-Co, F-Co) received sc. saline solution. At 48 h after the first injection pressure–volume analysis was carried out to assess left ventricular function. FFPE tissue slides were scanned and analyzed digitally, while myocardial proteins were quantified by liquid chromatography–tandem mass spectrometry (LC–MS/MS) using isobaric labeling. Concentrations of circulating steroid hormones were measured with LC–MS/MS. Feature selection (PLS and PLS-DA) was used to examine associations among functional, proteomic and hormonal datasets. Results Induction of ischemia resulted in 38% vs 17% mortality in M-Isch and F-Isch respectively. The extent of ischemic damage to surviving rats was comparable between the sexes. Systolic dysfunction was more pronounced in males, while females developed a more severe impairment of diastolic function. 2224 proteins were quantified, with 520 showing sex-specific differential regulation. Our analysis identified transcriptional, cytoskeletal, contractile, and mitochondrial proteins, molecular chaperones and the extracellular matrix as sources of disparity between the sexes. Bioinformatics highlighted possible associations of estrogens and their metabolites with early functional and proteomic alterations. Conclusions Our study has highlighted sex-specific alterations in systolic and diastolic function shortly after ischemia, and provided a comprehensive look at the underlying proteomic changes and the influence of estrogens and their metabolites. According to our bioinformatic analysis, inflammatory, mitochondrial, chaperone, cytoskeletal, extracellular and matricellular proteins are major sources of intersex disparity, and may be promising targets for early sex-specific pharmacologic interventions. Graphical Abstract

Keywords: cardiac functional; sex; myocardial ischemia; functional proteomic; sex specific

Journal Title: Journal of Translational Medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.