LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Loss of NF-κB p50 function synergistically augments microglial priming in the middle-aged brain

Photo from wikipedia

BackgroundWhile NF-κB p50 function is impaired in central nervous system disease, aging in non-CNS tissues, and response to reactive oxygen species, the role of NF-κB p50 in aging-associated microglial pro-inflammatory… Click to show full abstract

BackgroundWhile NF-κB p50 function is impaired in central nervous system disease, aging in non-CNS tissues, and response to reactive oxygen species, the role of NF-κB p50 in aging-associated microglial pro-inflammatory priming is poorly understood.MethodsMale NF-κB p50+/+ and NF-κB p50−/− mice at three different ages (1.5–3.0 month old, 8.0–11.0 month old, and 16.0–18.0 month old) were treated with LPS (5 mg/kg, IP) to trigger peripheral inflammation, where circulating cytokines, neuroinflammation, microglia morphology, and NF-κB p50/p65 function in brain tissue were determined 3 h later.ResultsPeripheral LPS injection in 9-month-old C57BL/6 mice resulted in lower NF-κB p50 DNA binding of nuclear extracts from the whole brain, when compared to 3-week-old C57BL/6 mice, revealing differences in LPS-induced NF-κB p50 activity in the brain across the mouse lifespan. To examine the consequences of loss NF-κB p50 function with aging, NF-κB p50+/+ and NF-κB p50−/− mice of three different age groups (1.5–3.0 month old, 8.0–11.0 month old, and 16.0–18.0 month old) were injected with LPS (5 mg/kg, IP). NF-κB p50−/− mice showed markedly elevated circulating, midbrain, and microglial TNFα when compared to NF-κB p50+/+ mice at all ages. Notably, the 16.0–18.0-month-old (middle aged) NF-κB p50−/− mice exhibited synergistically augmented LPS-induced serum and midbrain TNFα when compared to the younger (1.5–3.0 month old, young adult) NF-κB p50−/− mice. The 16.0–18.0-month-old LPS-treated NF-κB p50−/− mice also had the highest midbrain IL-1β expression, largest number of microglia with changes in morphology, and greatest elevation of pro-inflammatory factors in isolated adult microglia. Interestingly, aging NF-κB p50−/− mice exhibited decreased brain NF-κB p65 expression and activity.ConclusionsThese findings support that loss of NF-κB p50 function and aging in middle-aged mice may interact to excessively augment peripheral/microglial pro-inflammatory responses and point to a novel neuroinflammation signaling mechanism independent the NF-κB p50/p65 transcription factor in this process.

Keywords: function; p50; p50 mice; month old

Journal Title: Journal of Neuroinflammation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.