LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep convolutional neural network for automatic discrimination between Fragaria × Ananassa flowers and other similar white wild flowers in fields

Photo by catherine_avak from unsplash

BackgroundThe images of different flower species had small inter-class variations across different classes as well as large intra-class variations within a class. Flower classification techniques are mainly based on the… Click to show full abstract

BackgroundThe images of different flower species had small inter-class variations across different classes as well as large intra-class variations within a class. Flower classification techniques are mainly based on the features of color, shape and texture, however, the procedure always involves too many heuristics as well as manual labor to tweak parameters, which often leads to datasets with poor qualitative and quantitative measures. The current study proposed a deep architecture of convolutional neural network (CNN) for the purposes of improving the accuracy of identifying the white flowers of Fragaria × ananassa from other three wild flower species of Androsace umbellata (Lour.) Merr., Bidens pilosa L. and Trifolium repens L. in fields.ResultsThe explored CNN architecture consisted of eightfolds of learnable weights including 5 convolutional layers and 3 fully connected layers, which received a true color 227 × 227 pixels flower image as its input. The developed CNN detector was able to classify the instances of flowers at overall average accuracies of 99.2 and 95.0% in the training and test procedure, respectively. The state-of-the-art CNN model was compared with the classical models of the scale-invariant feature transform (SIFT) features and the pyramid histogram of orientated gradient (PHOG) features combined with the multi-class support vector machine (SVM) algorithm. The proposed model turned out to be much more accurate than the traditional models of SIFT + SVM at overall average accuracies of 82.9 and 55.6% in the training and test procedure and PHOG + SVM at overall average accuracies of 78.3 and 63.1%, respectively.ConclusionsThe proposed state-of-the-art CNN method demonstrates that artificial intelligence is capable of precise classification of the white flower images, whose accuracy is comparable to traditional algorithms. The presented algorithm can be further used for the discrimination of white wild flowers in fields.

Keywords: white wild; convolutional neural; wild flowers; neural network; fragaria ananassa; flowers fields

Journal Title: Plant Methods
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.