LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adipose-derived mesenchymal stem cells with hypoxic preconditioning improve tenogenic differentiation

Photo by lauramayela99 from unsplash

Background Adipose-derived mesenchymal stem cells (ADSCs), as seed cells for tendon tissue engineering, are promising for tendon repair and regeneration. But for ADSCs, diverse oxygen tensions have different stimulatory effects.… Click to show full abstract

Background Adipose-derived mesenchymal stem cells (ADSCs), as seed cells for tendon tissue engineering, are promising for tendon repair and regeneration. But for ADSCs, diverse oxygen tensions have different stimulatory effects. To explore this issue, we investigated the tenogenic differentiation capability of ADSCs under hypoxia condition (5% O 2 ) and the possible signaling pathways correspondingly. The effects of different oxygen tensions on proliferation, migration, and tenogenic differentiation potential of ADSCs were investigated. Methods P4 ADSCs were divided into a hypoxic group and a normoxic group. The hypoxic group was incubated under a reduced O 2 pressure (5% O 2 , 5% CO 2 , balanced N 2 ). The normoxic group was cultured in 21% O 2 . Two groups were compared: HIF-1α inhibitor (2-MeOE2) in normoxic culturing conditions and hypoxic culturing conditions. Hypoxia-inducible factor-1α (HIF-1α) and VEGF were measured using RT-qPCR. Specific HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2) was applied to investigate whether HIF-1α involved in ADSCs tenogenesis under hypoxia. Results Hypoxia significantly reduced proliferation and migration of ADSCs. Continuous treatment of ADSCs at 5% O 2 resulted in a remarkable decrease in HIF-1α expression in comparison with 20% O 2 . Additionally, ADSCs of hypoxia preconditioning exhibited higher mRNA expression levels of the related key tenogenic makers and VEGF than normoxia via RT-qPCR measurement ( p  ˂ 0.05). Furthermore, the effects of hypoxia on tenogenic differentiation of ADSCs were inhibited by 2-MeOE2. Hypoxia can also stimulate VEGF production in ADSCs. Conclusions Our findings demonstrate that hypoxia preconditioning attenuates the proliferation and migration ability of ADSCs, but has positive impact on tenogenic differentiation through HIF-1α signaling pathway.

Keywords: differentiation; hif; mesenchymal stem; derived mesenchymal; adipose derived; tenogenic differentiation

Journal Title: Journal of Orthopaedic Surgery and Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.