LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The small GTPase ARF6 regulates GABAergic synapse development

Photo by sxy_selia from unsplash

ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1–6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells.… Click to show full abstract

ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1–6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.

Keywords: arf6; regulates gabaergic; arf6 regulates; small gtpase; gabaergic synapse; gtpase arf6

Journal Title: Molecular Brain
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.