© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,… Click to show full abstract
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The grand challenge In the modern world the design, development and use of new materials is having a major economic and societal impact in areas as diverse as: healthcare, energy, food production, transport, construction and electronics. The grand challenge for the coming decades is to be able to control the properties and functions of these new materials through intelligent design in environmentally friendly, energy efficient ways that are not possible presently. The ultimate goal is to be able to design and fabricate a material with a targeted range of properties with 100% success. All the current and future materials, with dimensions from the nanoscale to the macroscopic scale, are and will be, built through the assembly of individual atoms or small molecular building blocks. Through our determination to meet the grand challenge by controlling the assembly of these building blocks and developing the understanding of the science as we move up though the length scales, we will continue to make major breakthroughs in both science and engineering along the way that will transform the world as we know it. The directed assembly network (DAN) was one of three grand challenge networks originally funded by the EPSRC Chemistry Programme back in in 2010, and has been going from strength to strength since that time. The original vision of the DAN was to develop methodologies that will afford exquisite control over the preparation, properties and function of materials that can be assembled into complex pre-designed structures. Since then, without losing the original vision, it has expanded to include understanding how materials may be disassembled as well as assembled, and the ideas are not restricted to the solid state but solution and gas phase processes are also being included. There is also more focus on the scale-up of the new materials so that they are available in industrially useful quantities. Under the umbrella of this grand challenge, chemists, physicists, biologists, mathematicians, and chemical, mechanical and electronic engineers are combining in wide ranging collaborative projects to develop new materials, with targeted properties and functions that will ultimately meet some of the following current world challenges:
               
Click one of the above tabs to view related content.