LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The determination of Ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification

Photo from wikipedia

In this work, a novel aptamer-based electrochemical biosensor was developed for the determination of Ochratoxin A (OTA) by using carbon aerogels (CAs) and methylene blue (MB) as signal amplification strategy.… Click to show full abstract

In this work, a novel aptamer-based electrochemical biosensor was developed for the determination of Ochratoxin A (OTA) by using carbon aerogels (CAs) and methylene blue (MB) as signal amplification strategy. CAs was used as carrier to load the abundant of complementary DNA (cDNA), which could enhance the hybridization between CAs-cDNA and aptamer immobilized on the electrode surface, thus provide more double-stranded DNA for MB intercalation. The current of MB on the CAs-cDNA/apt/AuE sensor was twice that on the cDNA/apt/AuE sensor, which indicated that the CAs with high surface area enabled a higher loading of the cDNA and absorbed more MB, thus realized the signal amplification strategy. The optimum experimental conditions including MB incubation time of 15 min, aptamer concentration of 4.0 μmol/L, hybridization time of 2.0 h, and OTA incubation time of 18 min were obtained. The change of peak current was linearly proportional to the OTA concentration in the range of 0.10–10 ng/mL with the actual detection limit of 1.0 × 10−4 ng/mL. The experimental results showed that the prepared CAs-cDNA/apt/AuE exhibited good specificity, acceptable reproducibility and repeatability. This sensor was applied to detect OTA in the spiked corn samples, and obtained an acceptable average recovery of 89%.

Keywords: methylene blue; based electrochemical; signal amplification; carbon aerogels; determination ochratoxin; amplification

Journal Title: Chemistry Central Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.