LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overproduction of docosahexaenoic acid in Schizochytrium sp. through genetic engineering of oxidative stress defense pathways

Photo from wikipedia

Background Oxidation and peroxidation of lipids in microorganisms result in increased levels of intracellular reactive oxygen species (ROS) and reactive aldehydes, and consequent reduction of cell growth and lipid accumulation.… Click to show full abstract

Background Oxidation and peroxidation of lipids in microorganisms result in increased levels of intracellular reactive oxygen species (ROS) and reactive aldehydes, and consequent reduction of cell growth and lipid accumulation. Results To reduce oxygen-mediated cell damage and increase lipid and docosahexaenoic acid (DHA) production in Schizochytrium sp., we strengthened the oxidative stress defense pathways. Overexpression of the enzymes thioredoxin reductase (TRXR), aldehyde dehydrogenase (ALDH), glutathione peroxidase (GPO), and glucose-6-phosphate dehydrogenase (ZWF) strongly promoted cell growth, lipid yield, and DHA production. Coexpression of ZWF, ALDH, GPO, and TRXR enhanced ROS-scavenging ability. Highest values of dry cell weight, lipid yield, and DHA production (50.5 g/L, 33.1 g/L, and 13.3 g/L, respectively) were attained in engineered strain OaldH-gpo-trxR by shake flask fed-batch culture; these were increases of 18.5%, 80.9%, and 114.5% relative to WT values. Conclusions Our findings demonstrate that engineering of oxidative stress defense pathways is an effective strategy for promoting cell robustness, lipid yield, and DHA production in Schizochytrium .

Keywords: oxidative stress; stress defense; schizochytrium; cell; defense pathways

Journal Title: Biotechnology for Biofuels
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.