LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lipoprotein lipase hydrolysis products induce pro-inflammatory cytokine expression in triple-negative breast cancer cells

Photo from wikipedia

Objectives Breast cancer cell growth and proliferation requires lipids for energy production, cell membrane synthesis, or as signaling molecules. Lipids can be delivered to cells by lipoprotein lipase (LPL), an… Click to show full abstract

Objectives Breast cancer cell growth and proliferation requires lipids for energy production, cell membrane synthesis, or as signaling molecules. Lipids can be delivered to cells by lipoprotein lipase (LPL), an extracellular lipase that hydrolyzes triacylglycerols and phospholipids from lipoproteins, that is expressed by adipose tissue and some breast cancer cell lines. Studies have shown that lipoprotein hydrolysis products induce pro-inflammatory cytokine secretion by endothelial cells. Thus, our objective was to determine if hydrolysis products generated by LPL from total lipoproteins can also promote pro-inflammatory cytokine secretion from breast cancer cells. Results Using cytokine arrays, we found that MDA-MB-231 cells increased secretion of seven cytokines in response to treatment with lipoprotein hydrolysis products. In contrast, MCF-7 cells showed decreased secretion of two cytokines. Expanding the analysis to additional cell lines by ELISA, we found increased secretion of TNF-α and IL-6 by MDA-MB-468 cells, and increased secretion of IL-4 by MDA-MB-468 and SKBR3 cells. The changes to cytokine secretion profiles of the breast cancer cell types examined, including the non-cancerous MCF-10a breast cells, were independent of increased cell metabolic activity. These results provide information on how lipoprotein hydrolysis products within the tumor microenvironment might affect breast cancer cell viability and progression.

Keywords: cancer; cell; hydrolysis products; breast cancer

Journal Title: BMC Research Notes
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.