Objectives This data article aims to introduce the “XPolaris” R-package, designed to facilitate access to detailed soil data at any geographical location within the contiguous United States (CONUS). Without the… Click to show full abstract
Objectives This data article aims to introduce the “XPolaris” R-package, designed to facilitate access to detailed soil data at any geographical location within the contiguous United States (CONUS). Without the need of advanced R-programming skills, XPolaris enables users to convert raster data from the POLARIS database into traditional spreadsheet format [i.e., Comma-Separated Values (CSV)] for further data analyses. Data description The core of this publication is a code-tutorial envisioned to assist users in retrieving soil raster data within the CONUS. All data is sourced from the POLARIS database, a 30-m probabilistic map of soil series and different soil properties [Chaney et al. Geoderma 274:54, 2016, Chaney et al. Water Resour Res 55:2916, 2019]. POLARIS represents an optimization of the Soil Survey Geographic (SSURGO) database, circumventing issues of spatial disaggregation, harmonizing, and filling spatial gaps. POLARIS was constructed using a machine learning algorithm, the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART-HPC) [Odgers et al. Geoderma 214:91, 2014]. Although the data is easily accessible in a raster format, retrieving large amounts of data can be time-consuming or require advanced programming skills.
               
Click one of the above tabs to view related content.