LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of chromium and tannic acid bioremediation by Aspergillus niveus using Plackett–Burman design and response surface methodology

A chromium and tannic acid resistance fungal strain was isolated from tannery effluent, and identified as Aspergillus niveus MCC 1318 based on its rDNA gene sequence. The MIC (minimum inhibitory… Click to show full abstract

A chromium and tannic acid resistance fungal strain was isolated from tannery effluent, and identified as Aspergillus niveus MCC 1318 based on its rDNA gene sequence. The MIC (minimum inhibitory concentration) of the isolate against chromium and tannic acid was found to be 200 ppm and 5% respectively. Optimization of physiochemical parameters for biosorption of chromium and tannic acid degradation was carried out by Plackett–Burman design followed by response surface methodology (RSM). The maximum chromium removal and tannic acid degradation was found to be 92 and 68% respectively by A. niveus. Chromium removal and tannic acid degradation was increased up to 11 and 6% respectively after optimization. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) was used to investigate biosorption phenomena.

Keywords: aspergillus niveus; methodology; tannic acid; chromium tannic

Journal Title: AMB Express
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.