The lipopeptide iturin from Bacillus subtilis has been found to have a potential inhibitory effect on breast cancer, alveolar adenocarcinoma, renal carcinoma, and colon adenocarcinoma. In this study, the potential… Click to show full abstract
The lipopeptide iturin from Bacillus subtilis has been found to have a potential inhibitory effect on breast cancer, alveolar adenocarcinoma, renal carcinoma, and colon adenocarcinoma. In this study, the potential of B. subtilis lipopeptides (a mixture of iturin homologues, concentration of 42.75%) to inhibit chronic myelogenous leukemia was evaluated using K562 myelogenous leukemia cells. The results showed that the lipopeptides could completely inhibit the growth of K562 at 100 μM, with an IC50 value of 65.76 μM. The lipopeptides inhibited the profile of K562 via three pathways: (1) induction of paraptosis indicated by the occurrence of cytoplasmic vacuoles, and swelling of the mitochondria and endoplasmic reticulum (ER) without membrane blebbing in the presence of a caspase inhibitor; (2) inhibition of autophagy progress illustrated by the upregulated expression of LCII and P62; and (3) induction of apoptosis by causing ROS burst, and induction of the intrinsic pathway indicated by the upregulated expression of cytochrome c (Cyto-c), bax, and bad, together with downregulated expression of Bcl-2. The ROS-dependent apoptosis and caspase-independent paraptosis were verified using the ROS inhibitor and caspase inhibitor, respectively. The extrinsic apoptosis pathway was not involved in the lipopeptide’s effects on K562. Overall, the B. subtilis lipopeptides (consisting of a majority of iturin) exhibited promising potential in inhibiting chronic myelogenous leukemia in vitro via simultaneously causing paraptosis, apoptosis, and inhibition of autophagy.
               
Click one of the above tabs to view related content.