LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An adaptive combination constrained proportionate normalized maximum correntropy criterion algorithm for sparse channel estimations

Photo by polarmermaid from unsplash

An adaptive combination constrained proportionate normalized maximum correntropy criterion (ACC-PNMCC) algorithm is proposed for sparse multi-path channel estimation under mixed Gaussian noise environment. The developed ACC-PNMCC algorithm is implemented by… Click to show full abstract

An adaptive combination constrained proportionate normalized maximum correntropy criterion (ACC-PNMCC) algorithm is proposed for sparse multi-path channel estimation under mixed Gaussian noise environment. The developed ACC-PNMCC algorithm is implemented by incorporating an adaptive combination function into the cost function of the proportionate normalized maximum correntropy criterion (PNMCC) algorithm to create a new penalty on the filter coefficients according to the devised threshold, which is based on the proportionate-type adaptive filter techniques and compressive sensing (CS) concept. The derivation of the proposed ACC-PNMCC algorithm is mathematically presented, and various simulation experiments have been carried out to investigate the performance of the proposed ACC-PNMCC algorithm. The experimental results show that our ACC-PNMCC algorithm outperforms the PNMCC and sparse PNMCC algorithms for sparse multi-path channel estimation applications.

Keywords: normalized maximum; adaptive combination; maximum correntropy; pnmcc algorithm; proportionate normalized; pnmcc

Journal Title: EURASIP Journal on Advances in Signal Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.