LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel downlink semi-persistent packet scheduling scheme for VoLTE traffic over heterogeneous wireless networks

Photo by dulhiier from unsplash

Long-term evolution (LTE) is becoming the first choice of mobile network operators (MNOs) when constructing a wireless network infrastructure because of its high data rate, high throughput, and low latency.… Click to show full abstract

Long-term evolution (LTE) is becoming the first choice of mobile network operators (MNOs) when constructing a wireless network infrastructure because of its high data rate, high throughput, and low latency. These significant advancements are necessary for satisfying the delivery of a wide-range of mobile applications and managed network resources. However, deploying a new LTE network or a transition from current legacy cellular networks to LTE can take several years to roll out. In the meantime, working in a heterogeneous wireless communication network looks inevitable. This paper investigates Voice over LTE (VoLTE) Quality of Service (QoS) under a heterogeneous wireless communication scenario. The contributions of this paper are twofold. First, a novel downlink (DL) semi-persistent scheduling scheme is proposed to reduce VoLTE end-to-end delay and increase system capacity. Second, an extensive network simulation model has been designed and implemented to evaluate the proposed scheme. The performance of the proposed scheme is compared with the performance of two relevant and well-known DL packet scheduling methods. The simulation results confirm that the proposed scheme is able to reduce VoLTE end-to-end delay and achieve a better system capacity than current methods, and maintain the desired VoLTE QoS.

Keywords: network; volte; heterogeneous wireless; downlink semi; wireless; novel downlink

Journal Title: EURASIP Journal on Wireless Communications and Networking
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.