LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust L1 tracker with CNN features

Photo by roberto_sorin from unsplash

Recently, L1 tracker has been widely applied and received great success in visual tracking. However, most L1 trackers use only the image intensity for sparse representation, which is insufficient to… Click to show full abstract

Recently, L1 tracker has been widely applied and received great success in visual tracking. However, most L1 trackers use only the image intensity for sparse representation, which is insufficient to represent the object especially when drastic appearance changes occur. Convolutional neural network (CNN) has demonstrated remarkable capability in a wide range of computer vision fields, and features extracted from different convolutional layers have different characteristics. In this paper, we propose a novel sparse representation model with convolutional features for visual tracking. Besides, to alleviate the redundancy from high-dimensional convolutional features, a feature selection method is adopted to remove noisy and irrelevant feature maps, which can reduce computation redundancy and improve tracking accuracy. Different from traditional sparse representation based tracking methods, our model not only exploits convolutional features to improve the robustness for describing the object appearance but also uses the trivial templates to model both reconstruction errors caused by sparse representation and the eigen-subspace representation. In addition, an unified objective function is proposed and a customized APG method is developed to effectively solve the optimization problem. Numerous qualitative and quantitative evaluations demonstrate that our tracker outperforms other state-of-the-art trackers in a wide range of tracking scenarios.

Keywords: robust tracker; sparse representation; representation; tracker; convolutional features; cnn

Journal Title: EURASIP Journal on Wireless Communications and Networking
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.