LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

System design of the physical layer for Loon’s high-altitude platform

Photo from wikipedia

This paper describes several aspects of the physical layer and over the air interface of Loon. Loon utilizes stratospheric balloon-based high-altitude platforms (HAPs) that use Long-Term Evolution (LTE) to connect… Click to show full abstract

This paper describes several aspects of the physical layer and over the air interface of Loon. Loon utilizes stratospheric balloon-based high-altitude platforms (HAPs) that use Long-Term Evolution (LTE) to connect people with standard User Equipment (UEs) to the Internet. In particular, topics covered include the Loon prototype eNodeB (eNB) antenna pattern, the observed channel, UE battery life, and coexistence with terrestrial networks using the same spectrum. While channel models from a HAP to the ground have been well studied in the past, the use of polarization diversity to establish Multi-Input Multi-Output (MIMO) communication to real UEs below 1 GHz has not. In addition, a theoretical analysis of terrestrial coexistence and an analysis of the estimated impact on UE battery life when communicating with HAPs are presented. Finally, results from several measurement campaigns and from experiments with polarization diversity are presented as a spot check of theory.

Keywords: physical layer; system design; high altitude; loon

Journal Title: EURASIP Journal on Wireless Communications and Networking
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.