In this paper, we investigate the resource allocation scheme for an unmanned-aerial-vehicle-enable (UAV-enabled) two-way relaying system with simultaneous wireless information and power transfer (SWIPT), where two user equipment exchange information… Click to show full abstract
In this paper, we investigate the resource allocation scheme for an unmanned-aerial-vehicle-enable (UAV-enabled) two-way relaying system with simultaneous wireless information and power transfer (SWIPT), where two user equipment exchange information with the help of UAV relay and harvest energy through power splitting (PS) scheme. Under the transmission power constraints at UEs and UAV relay, a non-convex intractable optimization problem is formulated which maximizes the sum retained energy of two UEs while satisfying the minimum signal-to-noise ratio requirement. We decouple the complicated beamforming and PS factor optimization problem into three solvable subproblems and propose an efficient alternating optimization scheme. Subsequently, in order to reduce the complexity, a robust scheme based on generalized singular value decomposition (GSVD) is designed. Finally, numerical results verify the robustness and effectiveness of the two proposed schemes.
               
Click one of the above tabs to view related content.