LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blind image separation using pyramid technique

Photo from wikipedia

Signal and image separation is an important processing step for accurate image reconstruction, which is increasingly applied to many medical imaging applications and communication systems. Most of the conventional separation… Click to show full abstract

Signal and image separation is an important processing step for accurate image reconstruction, which is increasingly applied to many medical imaging applications and communication systems. Most of the conventional separation approaches are based on frequency domain and time domain. These approaches, however, are sensitive to noise and thus often produce undesirable results.In this paper, we propose a novel method of image separation. It incorporates the property of pyramid component extracted from the image and a finite ridgelet transform (FRT) to obtain a precise analysis of the images and thus correctly separate the images even in a highly noisy environment. We obtain the multiple components of the target images by employing a pyramid processing, which operates in the various domains and thus can decompose the image into multiple components.In addition, the pyramid decomposition in the proposed method can eliminate information redundancy in the target image and thus can substantially enhance the quality of image separation. We have conducted extensive simulations, which demonstrate that the proposed pyramid structure with FRT outperforms the conventional methods based on time domain and trigonometric transforms.

Keywords: image; image separation; separation; separation using; using pyramid; blind image

Journal Title: EURASIP Journal on Image and Video Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.