LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Image denoising with morphology- and size-adaptive block-matching transform domain filtering

Photo from wikipedia

BM3D is a state-of-the-art image denoising method. Its denoised results in the regions with strong edges can often be better than in the regions with smooth or weak edges, due… Click to show full abstract

BM3D is a state-of-the-art image denoising method. Its denoised results in the regions with strong edges can often be better than in the regions with smooth or weak edges, due to more accurate block-matching for the strong-edge regions. So using adaptive block sizes on different image regions may result in better image denoising. Based on these observations, in this paper, we first partition each image into regions belonging to one of the three morphological components, i.e., contour, texture, and smooth components, according to the regional energy of alternating current (AC) coefficients of discrete cosine transform (DCT). Then, we can adaptively determine the block size for each morphological component. Specifically, we use the smallest block size for the contour components, the medium block size for the texture components, and the largest block size for the smooth components. To better preserve image details, we also use a multi-stage strategy to implement image denoising, where every stage is similar to the BM3D method, except using adaptive sizes and different transform dimensions. Experimental results show that our proposed algorithm can achieve higher PSNR and MSSIM values than the BM3D method, and also better visual quality of denoised images than by the BM3D method and some other existing state-of-the-art methods.

Keywords: image; block; size; image denoising; block matching; transform

Journal Title: EURASIP journal on image and video processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.