LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces

Photo from wikipedia

AbstractIn this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations… Click to show full abstract

AbstractIn this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u(s)=ϕi(s)+∫abKi(s,r,u(r))dr,$$u(s)=\phi_{i}(s)+ \int_{a}^{b}K_{i}\bigl(s, r,u(r)\bigr) \,dr, $$ where s∈(a,b)⊆R$s\in(a,b)\subseteq\mathbb{R}$; u,ϕi∈C((a,b),Rn)$u, \phi_{i}\in C((a,b),\mathbb{R}^{n})$ and Ki:(a,b)×(a,b)×Rn→Rn$K_{i}:(a,b)\times(a,b)\times \mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$, i=1,2,…,6$i=1,2,\ldots,6 $ and u(s)=pi(s)+λ∫0tm(s,r)gi(r,u(r))dr+μ∫0∞n(s,r)hi(r,u(r))dr,$$u(s)=p_{i}(s)+\lambda \int_{0}^{t}m(s, r)g_{i}\bigl(r,u(r) \bigr)\,dr+\mu \int_{0}^{\infty}n(s, r)h_{i}\bigl(r,u(r) \bigr)\,dr, $$ where s∈(0,∞)$s\in(0,\infty)$, λ,μ∈R$\lambda,\mu\in\mathbb{R}$, u, pi$p_{i}$, m(s,r)$m(s, r)$, n(s,r)$n(s, r)$, gi(r,u(r))$g_{i}(r,u(r))$ and hi(r,u(r))$h_{i}(r,u(r))$, i=1,2,…,6$i=1,2,\ldots,6$, are real-valued measurable functions both in s and r on (0,∞)$(0,\infty)$.

Keywords: results incomplete; point results; metric spaces; incomplete metric; integral equations; fixed point

Journal Title: Journal of Inequalities and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.