AbstractIn this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations… Click to show full abstract
AbstractIn this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u(s)=ϕi(s)+∫abKi(s,r,u(r))dr,$$u(s)=\phi_{i}(s)+ \int_{a}^{b}K_{i}\bigl(s, r,u(r)\bigr) \,dr, $$ where s∈(a,b)⊆R$s\in(a,b)\subseteq\mathbb{R}$; u,ϕi∈C((a,b),Rn)$u, \phi_{i}\in C((a,b),\mathbb{R}^{n})$ and Ki:(a,b)×(a,b)×Rn→Rn$K_{i}:(a,b)\times(a,b)\times \mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$, i=1,2,…,6$i=1,2,\ldots,6 $ and u(s)=pi(s)+λ∫0tm(s,r)gi(r,u(r))dr+μ∫0∞n(s,r)hi(r,u(r))dr,$$u(s)=p_{i}(s)+\lambda \int_{0}^{t}m(s, r)g_{i}\bigl(r,u(r) \bigr)\,dr+\mu \int_{0}^{\infty}n(s, r)h_{i}\bigl(r,u(r) \bigr)\,dr, $$ where s∈(0,∞)$s\in(0,\infty)$, λ,μ∈R$\lambda,\mu\in\mathbb{R}$, u, pi$p_{i}$, m(s,r)$m(s, r)$, n(s,r)$n(s, r)$, gi(r,u(r))$g_{i}(r,u(r))$ and hi(r,u(r))$h_{i}(r,u(r))$, i=1,2,…,6$i=1,2,\ldots,6$, are real-valued measurable functions both in s and r on (0,∞)$(0,\infty)$.
               
Click one of the above tabs to view related content.