LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay

Photo from archive.org

In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equations with delay by using Hilfer fractional derivative, which generalizes the famous Riemann-Liouville fractional derivative. The definition… Click to show full abstract

In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equations with delay by using Hilfer fractional derivative, which generalizes the famous Riemann-Liouville fractional derivative. The definition of mild solutions for the studied problem was given based on an operator family generated by the operator pair (A,B)$(A,B)$ and probability density function. Combining the techniques of fractional calculus, measure of noncompactness, and fixed point theorem with respect to k-set-contractive, we obtain a new existence result of mild solutions. The results obtained improve and extend some related conclusions on this topic. At last, we present an application that illustrates the abstract results.

Keywords: nonautonomous evolution; evolution equations; mild solutions; existence mild; fractional nonautonomous

Journal Title: Journal of Inequalities and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.