LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On stable entire solutions of sub-elliptic system involving advection terms with negative exponents and weights

Photo from wikipedia

We examine the weighted Grushin system involving advection terms given by { Δ G u − a ⋅ ∇ G u = ( 1 + ∥ z ∥ 2 (… Click to show full abstract

We examine the weighted Grushin system involving advection terms given by { Δ G u − a ⋅ ∇ G u = ( 1 + ∥ z ∥ 2 ( α + 1 ) ) γ 2 ( α + 1 ) v − p in  R n , Δ G v − a ⋅ ∇ G v = ( 1 + ∥ z ∥ 2 ( α + 1 ) ) γ 2 ( α + 1 ) u − q in  R n , $$ \textstyle\begin{cases} \Delta _{G} u - a \cdot \nabla _{G} u =(1+ \Vert \mathbf{z} \Vert ^{2(\alpha +1)})^{ \frac{\gamma }{2(\alpha +1)}} v^{-p} &\text{in $\mathbb {R}^{n}$}, \\ \Delta _{G} v - a \cdot \nabla _{G} v =(1+ \Vert \mathbf{z} \Vert ^{2(\alpha +1)})^{ \frac{\gamma }{2(\alpha +1)}} u^{-q} &\text{in $\mathbb {R}^{n}$}, \end{cases} $$ where Δ G u = Δ x u + | x | 2 α Δ y u $\Delta _{G} u= \Delta _{x} u+ |x|^{2\alpha } \Delta _{y} u$ , z = ( x , y ) ∈ R n : = R n 1 × R n 2 $\mathbf{z}=(x,y) \in \mathbb {R}^{n}:= \mathbb {R}^{n_{1}} \times \mathbb {R}^{n_{2}}$ is the Grushin operator, α ≥ 0 $\alpha \geq 0$ , p ≥ q > 1 $p \geq q >1$ , ∥ z ∥ 2 ( α + 1 ) = | x | 2 ( α + 1 ) + | y | 2 $\|\mathbf{z}\|^{2(\alpha +1)}= |x|^{2(\alpha +1)} + |y|^{2} $ , γ ≥ 0 $\gamma \geq 0$ and a is a smooth divergence-free vector that we will specify later. Inspired by recent progress in the study of the Lane–Emden system, we establish some Liouville-type results for bounded stable positive solutions of the system. In particular, we prove the comparison principle to establish our result. As consequences, we obtain a Liouville-type theorem for the weighted Grushin equation involving advection terms Δ G u − a ⋅ ∇ G u = ( 1 + ∥ z ∥ 2 ( α + 1 ) ) γ 2 ( α + 1 ) u − p in  R n . $$ \Delta _{G} u - a \cdot \nabla _{G} u =\bigl(1+ \Vert \mathbf{z} \Vert ^{2(\alpha +1)}\bigr)^{ \frac{\gamma }{2(\alpha +1)}} u^{-p} \quad \mbox{in } \mathbb {R}^{n}. $$ The main tools in the proof of the main result are the comparison principle, nonlinear integral estimates via the stability assumption and the bootstrap argument. Our results generalize and improve the previous work in (Duong et al. in Complex Var. Elliptic Equ. 64(12):2117–2129, 2019 ).

Keywords: system; vert; advection terms; involving advection; alpha

Journal Title: Journal of Inequalities and Applications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.