Using some recent results of the Riesz decomposition method for sharp estimates of certain boundary value problems of harmonic functions in (St. Cer. Mat. 27:323-328, 1975), the boundary behaviors of… Click to show full abstract
Using some recent results of the Riesz decomposition method for sharp estimates of certain boundary value problems of harmonic functions in (St. Cer. Mat. 27:323-328, 1975), the boundary behaviors of upper and lower superharmonic multifunctions are studied. Several fundamental properties of these new classes of these functions are shown. A new technique is proposed to find the exact boundary behaviors by using Levin’s type boundary behaviors for harmonic functions admitting certain lower bounds in (Pacific J. Math. 15:961-970, 1965). Finally, some examples are given to illustrate the applications of our results.
               
Click one of the above tabs to view related content.