LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blow-up phenomena for p-Laplacian parabolic problems with Neumann boundary conditions

Photo from archive.org

AbstractIn this paper, we deal with the blow-up and global solutions of the following p-Laplacian parabolic problems with Neumann boundary conditions: {(g(u))t=∇⋅(|∇u|p−2∇u)+k(t)f(u)in Ω×(0,T),∂u∂n=0on ∂Ω×(0,T),u(x,0)=u0(x)≥0in Ω‾,$$\textstyle\begin{cases} (g(u) )_{t} =\nabla\cdot ( {|\nabla u|^{p-2}}\nabla u )+k(t)f(u)… Click to show full abstract

AbstractIn this paper, we deal with the blow-up and global solutions of the following p-Laplacian parabolic problems with Neumann boundary conditions: {(g(u))t=∇⋅(|∇u|p−2∇u)+k(t)f(u)in Ω×(0,T),∂u∂n=0on ∂Ω×(0,T),u(x,0)=u0(x)≥0in Ω‾,$$\textstyle\begin{cases} (g(u) )_{t} =\nabla\cdot ( {|\nabla u|^{p-2}}\nabla u )+k(t)f(u) & \mbox{in } \Omega\times(0,T), \\ \frac{\partial{u}}{\partial n}=0 &\mbox{on } \partial\Omega\times (0,T), \\ u(x,0)=u_{0}(x)\geq0 & \mbox{in } \overline{\Omega}, \end{cases} $$ where p>2$p>2$ and Ω is a bounded domain in Rn$\mathbb{R}^{n}$ (n≥2$n\geq 2$) with smooth boundary ∂Ω. By introducing some appropriate auxiliary functions and technically using maximum principles, we establish conditions to guarantee that the solution blows up in some finite time or remains global. In addition, the upper estimates of blow-up rate and global solution are specified. We also obtain an upper bound of blow-up time.

Keywords: problems neumann; boundary conditions; neumann boundary; blow phenomena; laplacian parabolic; parabolic problems

Journal Title: Boundary Value Problems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.