LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Global existence and stability of a class of nonlinear evolution equations with hereditary memory and variable density

Photo from wikipedia

AbstractIn this paper, we consider the initial boundary value problem of nonlinear evolution equation with hereditary memory, variable density, and external force term {|ut|ρutt−αΔu−Δutt+∫−∞tμ(t−s)Δu(s)ds−γΔut=f(u),(x,t)∈Ω×R+,u(x,t)=0,(x,t)∈∂Ω×R+,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω. $$\begin{aligned} \textstyle\begin{cases} \vert u_{t} \vert ^{\rho… Click to show full abstract

AbstractIn this paper, we consider the initial boundary value problem of nonlinear evolution equation with hereditary memory, variable density, and external force term {|ut|ρutt−αΔu−Δutt+∫−∞tμ(t−s)Δu(s)ds−γΔut=f(u),(x,t)∈Ω×R+,u(x,t)=0,(x,t)∈∂Ω×R+,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω. $$\begin{aligned} \textstyle\begin{cases} \vert u_{t} \vert ^{\rho }u_{tt}-\alpha \Delta u-\Delta u_{tt}+\int_{-\infty } ^{t}\mu (t-s)\Delta u(s)\,ds-\gamma \Delta u_{t}=f(u), \\ \quad (x,t)\in \varOmega \times \mathbb{R}^{+},\\ u(x,t)=0,\quad (x,t)\in \partial \varOmega \times \mathbb{R}^{+},\\ u(x,0)=u_{0}(x),\qquad u_{t}(x,0)=u_{1}(x),\quad x\in \varOmega. \end{cases}\displaystyle \end{aligned}$$ Under suitable assumptions, we prove the existence of a global solution by means of the Galerkin method, establish the exponential stability result by using only one simple auxiliary functional, and give the polynomial stability result.

Keywords: hereditary memory; nonlinear evolution; memory variable; stability; variable density

Journal Title: Boundary Value Problems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.