A degenerate parabolic equation of the form ( | v | β − 1 v ) t = div ( b ( x , t ) | ∇ v |… Click to show full abstract
A degenerate parabolic equation of the form ( | v | β − 1 v ) t = div ( b ( x , t ) | ∇ v | p ( x , t ) − 2 ∇ v ) + ∇ g → ⋅ ∇ γ → ( v ) $$\bigl( \vert v \vert ^{\beta-1}v\bigr)_{t}= \operatorname{div} \bigl(b(x,t) \vert \nabla v \vert ^{p(x,t)-2}\nabla v \bigr)+\nabla\vec{g}\cdot\nabla\vec{\gamma}(v) $$ is considered, where g → = { g i ( x , t ) } $\vec{g}=\{g^{i}(x,t)\}$ , γ → ( v ) = { γ i ( v ) } $\vec{\gamma}(v)=\{ \gamma_{i}(v)\}$ . If the diffusion coefficient b ( x , t ) ≥ 0 $b(x,t)\geq0$ is degenerate on the boundary, by adding some restrictions on b ( x , t ) $b(x,t)$ and g⃗ , the existence and uniqueness of weak solutions are proved. Based on the uniqueness, the stability of weak solutions can be proved without any boundary condition.
               
Click one of the above tabs to view related content.