We consider a class of generalized quasilinear Schrödinger equations − div ( l 2 ( u ) ∇ u ) + l ( u ) l ′ ( u )… Click to show full abstract
We consider a class of generalized quasilinear Schrödinger equations − div ( l 2 ( u ) ∇ u ) + l ( u ) l ′ ( u ) | ∇ u | 2 + V ( x ) u = f ( u ) , x ∈ R N , $$ -\operatorname{div}\bigl(l^{2}(u)\nabla u\bigr)+l(u)l'(u) \vert \nabla u \vert ^{2}+V(x)u= f(u),\quad x\in \mathbb{R}^{N}, $$ where l ( t ) : R → R + $l(t): \mathbb{R}\to\mathbb{R}^{+}$ is a nondecreasing function with respect to | t | $|t|$ , the potential function V is allowed to be sign-changing so that the Schrödinger operator − Δ + V $-\Delta+V$ possesses a finite-dimensional negative space. We obtain existence and multiplicity results for the problem via the Symmetric Mountain Pass Theorem and Morse theory.
               
Click one of the above tabs to view related content.