We consider the existence of multiple solutions of the following singular nonlocal elliptic problem: $$\begin{aligned} \textstyle\begin{cases} -M(\int _{\mathbb{R} ^{N}}{ \vert x \vert ^{-ap} \vert \nabla u \vert ^{p}})\operatorname{div}( \vert x… Click to show full abstract
We consider the existence of multiple solutions of the following singular nonlocal elliptic problem: $$\begin{aligned} \textstyle\begin{cases} -M(\int _{\mathbb{R} ^{N}}{ \vert x \vert ^{-ap} \vert \nabla u \vert ^{p}})\operatorname{div}( \vert x \vert ^{-ap} \vert \nabla u \vert ^{p-2}\nabla u)= h(x) \vert u \vert ^{r-2}u+H(x) \vert u \vert ^{q-2}u, \\ u(x)\rightarrow 0 \quad \text{as } \vert x \vert \rightarrow \infty , \end{cases}\displaystyle \end{aligned}$$ where $x\in \mathbb{R} ^{N}$, and $M(t)=\alpha +\beta t$. By the variational method we prove that the problem has infinitely many solutions when some conditions are fulfilled.
               
Click one of the above tabs to view related content.