LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The joint effects of diffusion and delay on the stability of a ratio-dependent predator-prey model

Photo by geraninmo from unsplash

This paper is concerned with a diffusive and delayed predator-prey system with Leslie-Gower and ratio-dependent Holling type III schemes subject to homogeneous Neumann boundary conditions. Preliminary analyses on the well-posedness… Click to show full abstract

This paper is concerned with a diffusive and delayed predator-prey system with Leslie-Gower and ratio-dependent Holling type III schemes subject to homogeneous Neumann boundary conditions. Preliminary analyses on the well-posedness of solutions and the dissipativeness of the system are presented with assistance of inequality technique. Then the Hopf bifurcation induced by spatial diffusion and time delay is discussed, respectively. Moreover, the bifurcation properties are obtained by computing the norm forms on the center manifold. Finally, some numerical simulations and conclusions are given to verify and illustrate the theoretical results.

Keywords: predator prey; ratio dependent; diffusion; delay

Journal Title: Advances in Difference Equations
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.