LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the numerical solution of Fisher’s equation with coefficient of diffusion term much smaller than coefficient of reaction term

Photo from wikipedia

Li et al. (SIAM J. Sci. Comput. 20:719–738, 1998) used the moving mesh partial differential equation (MMPDE) to solve a scaled Fisher’s equation and the initial condition consisting of an… Click to show full abstract

Li et al. (SIAM J. Sci. Comput. 20:719–738, 1998) used the moving mesh partial differential equation (MMPDE) to solve a scaled Fisher’s equation and the initial condition consisting of an exponential function. The results obtained are not accurate because MMPDE is based on a familiar arc-length or curvature monitor function. Qiu and Sloan (J. Comput. Phys. 146:726–746, 1998) constructed a suitable monitor function called modified monitor function and used it with the moving mesh differential algebraic equation (MMDAE) method to solve the same problem of scaled Fisher’s equation and obtained better results.In this work, we use the forward in time central space (FTCS) scheme and the nonstandard finite difference (NSFD) scheme, and we find that the temporal step size must be very small to obtain accurate results. This causes the computational time to be long if the domain is large. We use two techniques to modify these two schemes either by introducing artificial viscosity or using the approach of Ruxun et al. (Int. J. Numer. Methods Fluids 31:523–533, 1999). These techniques are efficient and give accurate results with a larger temporal step size. We prove that these four methods are consistent for partial differential equations, and we also obtain the region of stability.

Keywords: fisher equation; term; equation; numerical solution; monitor function

Journal Title: Advances in Difference Equations
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.