LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion

Photo by thevoncomplex from unsplash

In this paper, the Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion and Neumann boundary condition is considered. Firstly, we present a kind of double parameters selection method, which… Click to show full abstract

In this paper, the Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion and Neumann boundary condition is considered. Firstly, we present a kind of double parameters selection method, which can be used to analyze the Turing–Hopf bifurcation of a general reaction-diffusion equation under Neumann boundary condition. By analyzing the distribution of eigenvalues, the stable region, the unstable region (including Turing unstable region), and Turing–Hopf bifurcation point are derived in a double parameters plane. Secondly, by applying this method, the Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion is investigated. Finally, we compute normal forms near Turing–Hopf singularity and verify the theoretical analysis by numerical simulations.

Keywords: turing hopf; diffusion; bifurcation ratio; ratio dependent; hopf bifurcation

Journal Title: Advances in Difference Equations
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.