In this paper, the Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion and Neumann boundary condition is considered. Firstly, we present a kind of double parameters selection method, which… Click to show full abstract
In this paper, the Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion and Neumann boundary condition is considered. Firstly, we present a kind of double parameters selection method, which can be used to analyze the Turing–Hopf bifurcation of a general reaction-diffusion equation under Neumann boundary condition. By analyzing the distribution of eigenvalues, the stable region, the unstable region (including Turing unstable region), and Turing–Hopf bifurcation point are derived in a double parameters plane. Secondly, by applying this method, the Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion is investigated. Finally, we compute normal forms near Turing–Hopf singularity and verify the theoretical analysis by numerical simulations.
               
Click one of the above tabs to view related content.