AbstractIn this paper, we consider the oscillation theory for fractional differential equations. We obtain oscillation criteria for three classes of fractional differential equations of the forms Tαt0x(t)+∑i=1mpi(t)x(τi(t))=0,t⩾t0,Tαt0(r(t)(Tαt0(x(t)+p(t)x(τ(t))))β)+q(t)xβ(σ(t))=0,t⩾t0, $$\begin{aligned}& T_{\alpha}^{t_{0}} x(t)+\sum_{i=1}^{m}p_{i}(t)x… Click to show full abstract
AbstractIn this paper, we consider the oscillation theory for fractional differential equations. We obtain oscillation criteria for three classes of fractional differential equations of the forms Tαt0x(t)+∑i=1mpi(t)x(τi(t))=0,t⩾t0,Tαt0(r(t)(Tαt0(x(t)+p(t)x(τ(t))))β)+q(t)xβ(σ(t))=0,t⩾t0, $$\begin{aligned}& T_{\alpha}^{t_{0}} x(t)+\sum_{i=1}^{m}p_{i}(t)x \bigl(\tau_{i}(t)\bigr)=0,\quad t\geqslant t_{0}, \\& T_{\alpha}^{t_{0}} \bigl(r(t) \bigl(T_{\alpha}^{t_{0}} \bigl(x(t)+p(t)x\bigl(\tau(t)\bigr)\bigr)\bigr)^{\beta}\bigr)+q(t)x^{\beta}\bigl(\sigma(t)\bigr)=0, \quad t\geqslant t_{0}, \end{aligned}$$ and Tαt0(r2Tαt0(r1(Tαt0y)β))(t)+p(t)(Tαt0y(t))β+q(t)f(y(g(t)))=0,t⩾t0,$$T_{\alpha}^{t_{0}}\bigl(r_{2}T_{\alpha}^{t_{0}} \bigl(r_{1}\bigl(T_{\alpha}^{t_{0}} y \bigr)^{\beta}\bigr)\bigr) (t)+p(t) \bigl(T_{\alpha}^{t_{0}} y(t)\bigr)^{\beta}+q(t)f\bigl(y\bigl(g(t)\bigr)\bigr)=0, \quad t \geqslant t_{0}, $$ where Tα$T_{\alpha}$ denotes the conformable differential operator of order α, 0
               
Click one of the above tabs to view related content.