LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oscillation theorems for three classes of conformable fractional differential equations

Photo from wikipedia

AbstractIn this paper, we consider the oscillation theory for fractional differential equations. We obtain oscillation criteria for three classes of fractional differential equations of the forms Tαt0x(t)+∑i=1mpi(t)x(τi(t))=0,t⩾t0,Tαt0(r(t)(Tαt0(x(t)+p(t)x(τ(t))))β)+q(t)xβ(σ(t))=0,t⩾t0, $$\begin{aligned}& T_{\alpha}^{t_{0}} x(t)+\sum_{i=1}^{m}p_{i}(t)x… Click to show full abstract

AbstractIn this paper, we consider the oscillation theory for fractional differential equations. We obtain oscillation criteria for three classes of fractional differential equations of the forms Tαt0x(t)+∑i=1mpi(t)x(τi(t))=0,t⩾t0,Tαt0(r(t)(Tαt0(x(t)+p(t)x(τ(t))))β)+q(t)xβ(σ(t))=0,t⩾t0, $$\begin{aligned}& T_{\alpha}^{t_{0}} x(t)+\sum_{i=1}^{m}p_{i}(t)x \bigl(\tau_{i}(t)\bigr)=0,\quad t\geqslant t_{0}, \\& T_{\alpha}^{t_{0}} \bigl(r(t) \bigl(T_{\alpha}^{t_{0}} \bigl(x(t)+p(t)x\bigl(\tau(t)\bigr)\bigr)\bigr)^{\beta}\bigr)+q(t)x^{\beta}\bigl(\sigma(t)\bigr)=0, \quad t\geqslant t_{0}, \end{aligned}$$ and Tαt0(r2Tαt0(r1(Tαt0y)β))(t)+p(t)(Tαt0y(t))β+q(t)f(y(g(t)))=0,t⩾t0,$$T_{\alpha}^{t_{0}}\bigl(r_{2}T_{\alpha}^{t_{0}} \bigl(r_{1}\bigl(T_{\alpha}^{t_{0}} y \bigr)^{\beta}\bigr)\bigr) (t)+p(t) \bigl(T_{\alpha}^{t_{0}} y(t)\bigr)^{\beta}+q(t)f\bigl(y\bigl(g(t)\bigr)\bigr)=0, \quad t \geqslant t_{0}, $$ where Tα$T_{\alpha}$ denotes the conformable differential operator of order α, 0

Keywords: bigl; bigr; oscillation; fractional differential; differential equations; alpha

Journal Title: Advances in Difference Equations
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.