LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Endpoint regularity of discrete multilinear fractional nontangential maximal functions

Photo by erik_karits from unsplash

AbstractGiven m≥1$m\geq 1$, 0≤λ≤1$0\leq \lambda \leq 1$, and a discrete vector-valued function f→=(f1,…,fm)$\vec{f}=(f_{1},\ldots,f_{m})$ with each fj:Zd→R$f_{j}:\mathbb{Z} ^{d}\rightarrow \mathbb{R}$, we consider the discrete multilinear fractional nontangential maximal operator Mα,Bλ(f→)(n→)=supr>0,x→∈Rd|n→−x→|≤λr1N(Br(x→))m−αd∏j=1m∑k→∈Br(x→)∩Zd|fj(k→)|,$$ \mathrm{M}_{\alpha,\mathcal{B}}^{\lambda }(\vec{f})… Click to show full abstract

AbstractGiven m≥1$m\geq 1$, 0≤λ≤1$0\leq \lambda \leq 1$, and a discrete vector-valued function f→=(f1,…,fm)$\vec{f}=(f_{1},\ldots,f_{m})$ with each fj:Zd→R$f_{j}:\mathbb{Z} ^{d}\rightarrow \mathbb{R}$, we consider the discrete multilinear fractional nontangential maximal operator Mα,Bλ(f→)(n→)=supr>0,x→∈Rd|n→−x→|≤λr1N(Br(x→))m−αd∏j=1m∑k→∈Br(x→)∩Zd|fj(k→)|,$$ \mathrm{M}_{\alpha,\mathcal{B}}^{\lambda }(\vec{f}) (\vec{n})=\mathop{\sup_{r>0, \vec{x}\in \mathbb{R}^{d}}}_{ \vert \vec{n}-\vec{x} \vert \leq \lambda r}\frac{1}{N(B _{r}(\vec{x}))^{m-\frac{\alpha }{d}}} \prod _{j=1}^{m}\sum_{\vec{k}\in B_{r}(\vec{x})\cap \mathbb{Z}^{d}} \bigl\vert f_{j}(\vec{k}) \bigr\vert , $$ where B$\mathcal{B}$ is the collection of all open balls B⊂Rd$B\subset \mathbb{R}^{d}$, Br(x→)$B_{r}(\vec{x})$ is the open ball in Rd$\mathbb{R}^{d}$ centered at x→∈Rd$\vec{x}\in \mathbb{R}^{d}$ with radius r, and N(Br(x→))$N(B_{r}(\vec{x}))$ is the number of lattice points in the set Br(x→)$B_{r}(\vec{x})$. We show that the operator f→↦|∇Mα,Bλ(f→)|$\vec{f}\mapsto |\nabla \mathrm{M}_{\alpha, \mathcal{B}}^{\lambda }(\vec{f})|$ is bounded and continuous from ℓ1(Zd)×ℓ1(Zd)×⋯×ℓ1(Zd)$\ell ^{1}(\mathbb{Z}^{d})\times \ell ^{1}(\mathbb{Z} ^{d})\times \cdots \times \ell ^{1}(\mathbb{Z}^{d})$ to ℓq(Zd)$\ell ^{q}(\mathbb{Z} ^{d})$ if 0≤αdmd−α+1$q>\frac{d}{md- \alpha +1}$. We also prove that the same result also holds for the discrete multilinear fractional nontangential maximal operators associated with cubes. These results we obtained represent significant and natural extensions of what was known previously.

Keywords: nontangential maximal; multilinear fractional; mathbb; discrete multilinear; vec; fractional nontangential

Journal Title: Advances in Difference Equations
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.