LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fractional order ecological system for complexities of interacting species with harvesting threshold in imprecise environment

Photo by yanots from unsplash

The key objective of this paper is to study the imprecise biological complexities in the interaction of two species pertaining to harvesting threshold. It is explained by taking the prey–predator… Click to show full abstract

The key objective of this paper is to study the imprecise biological complexities in the interaction of two species pertaining to harvesting threshold. It is explained by taking the prey–predator model with imprecise biological parameters and fractional order generalized Hukuhara (fgH) differentiability. In this vain, different possible systems of the model are constructed, according to the increasing and decreasing behavior of population growth. Feasibility and stability analyses of equilibrium points of the stated models are also discussed by means of variational matrix with Routh–Hurwitz conditions. In addition, the numerical elaborations are carried out by taking parametric expansion of fuzzy fractional Laplace transform (FFLT). This significantly helps the researchers in using a novel approach to analyze the constant solutions of the dynamical systems in the presence of fractional index. This would allow the avoidance of any intricacy that occurs while solving fractional order derivatives. Furthermore, this attempt also provides numerical and pictorial results, obtained through some well-known methods, namely fifth-forth Runge–Kutta method (FFRK), Grunwald–Letnikov’s definition (GL) and Adams–Bashforth method (ABM) that are deemed appropriate to scrutinize the dynamics of the system of equations.

Keywords: order; system; fractional order; harvesting threshold; order ecological; imprecise

Journal Title: Advances in Difference Equations
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.