This paper presents the periodic averaging principle for impulsive stochastic dynamical systems driven by fractional Brownian motion (fBm). Under non-Lipschitz condition, we prove that the solutions to impulsive stochastic differential… Click to show full abstract
This paper presents the periodic averaging principle for impulsive stochastic dynamical systems driven by fractional Brownian motion (fBm). Under non-Lipschitz condition, we prove that the solutions to impulsive stochastic differential equations (ISDEs) with fBm can be approximated by the solutions to averaged SDEs without impulses both in the sense of mean square and probability. Finally, an example is provided to illustrate the theoretical results.
               
Click one of the above tabs to view related content.