LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Andronov–Hopf and Neimark–Sacker bifurcations in time-delay differential equations and difference equations with applications to models for diseases and animal populations

Photo by reganography from unsplash

In many areas, researchers might think that a differential equation model is required, but one might be forced to use an approximate difference equation model if data is only available… Click to show full abstract

In many areas, researchers might think that a differential equation model is required, but one might be forced to use an approximate difference equation model if data is only available at discrete points in time. In this paper, a detailed comparison is given of the behavior of continuous and discrete models for two representative time-delay models, namely a model for HIV and an extended logistic growth model. For each model, there are seven different time-delay versions because there are seven different positions to include time delays. For the seven different time-delay versions of each model, proofs are given of necessary and sufficient conditions for the existence and stability of equilibrium points and for the existence of Andronov–Hopf bifurcations in the differential equations and Neimark–Sacker bifurcations in the difference equations. We show that only five of the seven time-delay versions have bifurcations and that all bifurcation versions have supercritical limit cycles with one having a repelling cycle and four having attracting cycles. Numerical simulations are used to illustrate the analytical results and to show that critical times for Neimark–Sacker bifurcations are less than critical times for Andronov–Hopf bifurcations but converge to them as the time step of the discretization tends to zero.

Keywords: neimark sacker; difference; sacker bifurcations; time; andronov hopf; time delay

Journal Title: Advances in Difference Equations
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.