LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A cloud priority-based dynamic online double auction mechanism (PB-DODAM)

Photo from wikipedia

Double auctions are considered to be effective price-scheduling mechanisms to resolve cloud resource allocation and service pricing problems. Most of the classical double auction models use price-based mechanisms in which… Click to show full abstract

Double auctions are considered to be effective price-scheduling mechanisms to resolve cloud resource allocation and service pricing problems. Most of the classical double auction models use price-based mechanisms in which determination of the winner is based on the prices offered by the agents in the market. In cloud ecosystems, the services offered by cloud service providers are inherently time-constrained and if they are not sold, the allocated resources for the unsold services are wasted. Furthermore, cloud service users have time constraints to complete their tasks, otherwise, they would not need to request these services. These features, perishability and time-criticality, have not received much attention in most classical double auction models. In this paper, we propose a cloud priority-based dynamic online double auction mechanism (PB-DODAM), which is aligned with the dynamic nature of cloud supply and demand and the agents’ time constraints. In PB-DODAM, a heuristic algorithm which prioritizes the agents’ asks and bids based on their overall condition and time constraints for resource allocation and price-scheduling mechanisms is proposed. The proposed mechanism drastically increases resource allocation and traders’ profits in both low-risk and high-risk market conditions by raising the matching rate. Moreover, the proposed mechanism calculates the precise defer time to wait for any urgent or high-priority request without sacrificing the achieved performance in resource allocation and traders’ profits. Based on experimental results in different scenarios, the proposed mechanism outperforms the classical price-based online double auctions in terms of resource allocation efficiency and traders’ profits while fulfilling the double auction’s truthfulness pillar.

Keywords: resource allocation; mechanism; time; cloud; auction; double auction

Journal Title: Journal of Cloud Computing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.