As part of efforts to restore fishery resources and recover damaged coastal ecosystems, artificial reefs are often anchored on the seafloor in coastal zones, to provide new habitats for marine… Click to show full abstract
As part of efforts to restore fishery resources and recover damaged coastal ecosystems, artificial reefs are often anchored on the seafloor in coastal zones, to provide new habitats for marine organisms. The aim of the study was to describe the structure of a community of benthic invertebrates colonising a niche-type artificial reef (AATN in Spanish). Nine structures were anchored at depths of 16 ± 1.5 m for 99 weeks (22 months) in the Area of Benthic Resource Management and Exploitation (AMERB) in coastal waters of the Region of Bio Bio, Chile. The results showed that, at 3 months from submersion of the NTAR, much of the artificial substrate remained bare and there were only low levels of specimens of Balanus sp. barnacles, showing mean coverage of 11.26%, and even lower proportions of Rhodophyta, with mean coverage of 0.34%. At 6 months, the presence of hydrozoans was seen, decreasing the coverage of the barnacles, which was aided further at 8 months with the arrival of barnacle predatory invertebrates. At 8 months, new benthic invertebrates appeared and competed for the substrate. These included sponges and algae. At 99 weeks, the hydrozoans dominated the substrate, followed by barnacles and Rhodophyta, the first colonising organisms, leading to colonisation by motile macro-invertebrates, mainly consisting of crustaceans, echinoderms and molluscs. The AATN artificial system provides an ideal substrate for the development of early ecological succession and the use of this technology should be feasible in the recovery process of habitat damaged by anthropogenic actions and climate change.
               
Click one of the above tabs to view related content.