LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of variable retention harvesting on canopy transpiration in a red pine plantation forest

Photo by dipaccicoffeeco from unsplash

Background Variable Retention Harvesting (VRH) is a forest management practice applied to enhance forest growth, improve biodiversity, preserve ecosystem function and provide economic revenue from harvested timber. There are many… Click to show full abstract

Background Variable Retention Harvesting (VRH) is a forest management practice applied to enhance forest growth, improve biodiversity, preserve ecosystem function and provide economic revenue from harvested timber. There are many different forms and compositions in which VRH is applied in forest ecosystems. In this study, the impacts of four different VRH treatments on transpiration were evaluated in an 83-year-old red pine (Pinus Pinus resinosa ) plantation forest in the Great Lakes region in Canada. These VRH treatments included 55% aggregated crown retention (55A), 55% dispersed crown retention (55D), 33% aggregated crown retention (33A), 33% dispersed crown retention (33D) and unharvested control (CN) plot. These VRH treatments were implemented in 1-ha plots in the winter of 2014, while sap flow measurements were conducted from 2018 to 2020. Results Study results showed that tree-level transpiration was highest among trees in the 55D treatment, followed by 33D, 55A, 33A and CN plots. We found that photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) were major controls or drivers of transpiration in all VRH treatments. Our study suggests that dispersed or distributed retention of 55% basal area (55D) is the ideal forest management technique to enhance transpiration and forest growth. Conclusions This study will help researchers, forest managers and decision-makers to improve their understanding of water cycling in forest ecosystem and adopt the best forest management regimes to enhance forest growth, health and resiliency to climate change.

Keywords: retention; retention harvesting; variable retention; vrh treatments; red pine; transpiration

Journal Title: Ecological Processes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.