LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Incorporating periodic variability in hidden Markov models for animal movement

Photo from wikipedia

BackgroundClustering time-series data into discrete groups can improve prediction and provide insight into the nature of underlying, unobservable states of the system. However, temporal variation in probabilities of group occupancy,… Click to show full abstract

BackgroundClustering time-series data into discrete groups can improve prediction and provide insight into the nature of underlying, unobservable states of the system. However, temporal variation in probabilities of group occupancy, or the rates at which individuals move between groups, can obscure such signals. We use finite mixture and hidden Markov models (HMMs), two standard clustering techniques, to model long-term hourly movement data from Florida panthers (Puma concolor coryi). Allowing for temporal heterogeneity in transition probabilities, a straightforward but little-used extension of the standard HMM framework, resolves some shortcomings of current models and clarifies the movement patterns of panthers.ResultsSimulations and analyses of panther data showed that model misspecification (omitting important sources of variation) can lead to overfitting/overestimating the underlying number of movement states. Models incorporating temporal heterogeneity identify fewer underlying states, and can make out-of-sample predictions that capture observed diurnal and autocorrelated movement patterns exhibited by Florida panthers.ConclusionIncorporating temporal heterogeneity improved goodness of fit and predictive capability as well as reducing the selected number of movement states closer to a biologically interpretable level, although there is further room for improvement here. Our results suggest that incorporating additional structure in statistical models of movement can allow more accurate assessment of appropriate model complexity.

Keywords: temporal heterogeneity; hidden markov; movement; markov models; incorporating periodic

Journal Title: Movement Ecology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.