LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Core surface sub-centennial magnetic flux patches: characteristics and evolution

Photo from wikipedia

Short-term constituents of the secular variation, at inter-decadal (20–30 years) and sub-centennial (60–90 years) time scales, present in observatory data and main field models, are also found in the radial field evolution… Click to show full abstract

Short-term constituents of the secular variation, at inter-decadal (20–30 years) and sub-centennial (60–90 years) time scales, present in observatory data and main field models, are also found in the radial field evolution at core surface. The paper is focused on the sub-centennial constituent in the gufm1 model. Time–Longitude (t–λ) plots, covering the 400 years time span of the model, at various latitudes between 70°N and 70°S, show a clear westward movement of the sub-centennial constituent field features in the 20°N–20°S latitude band. The sub-centennial constituent at latitudes larger than 50°N/S stands in fact for the fine structure of high-latitude flux lobes. Since 1900 this fine structure shows a westward displacement. Time–Latitude (t–φ) plots indicate also northward and southward components of the movement. The traveling speeds of the sub-centennial constituent field are derived, on one hand, empirically based on Time–Longitude and Time–Latitude plots, and on the other, mathematically by means of the Radon transform method. Important results of this paper are related to characterization of the evolution of the radial field at core surface at sub-centennial time scales, namely (1) evidencing two types of azimuthal flow, equatorial and high latitude ones, responsible for the observed westward drift of the surface field, and (2) quantitative information on meridional displacements of the core surface magnetic flux patches.

Keywords: evolution; sub centennial; core surface; field; time

Journal Title: Earth, Planets and Space
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.