LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model selection criteria for dynamic brain PET studies

Photo from wikipedia

Background Several criteria exist to identify the optimal model for quantification of tracer kinetics. The purpose of this study was to evaluate the correspondence in kinetic model preference identification for brain… Click to show full abstract

Background Several criteria exist to identify the optimal model for quantification of tracer kinetics. The purpose of this study was to evaluate the correspondence in kinetic model preference identification for brain PET studies among five model selection criteria: Akaike Information Criterion (AIC), AIC unbiased (AICC), model selection criterion (MSC), Schwartz Criterion (SC), and F-test.Materials and MethodsSix tracers were evaluated: [11C]FMZ, [11C]GMOM, [11C]PK11195, [11C]Raclopride, [18F]FDG, and [11C]PHT, including data from five subjects per tracer. Time activity curves (TACs) were analysed using six plasma input models: reversible single-tissue model (1T2k), irreversible two-tissue model (2T3k), and reversible two-tissue model (2T4k), all with and without blood volume fraction parameter (VB). For each tracer and criterion, the percentage of TACs preferring a certain model was calculated.ResultsFor all radiotracers, strong agreement was seen across the model selection criteria. The F-test was considered as the reference, as it is a frequently used hypothesis test. The F-test confirmed the AIC preferred model in 87% of all cases. The strongest (but minimal) disagreement across regional TACs was found when comparing AIC with AICC. Despite these regional discrepancies, same preferred kinetic model was obtained using all criteria, with an exception of one FMZ subject.ConclusionIn conclusion, all five model selection criteria resulted in similar conclusions with only minor differences that did not affect overall model selection.

Keywords: brain pet; model; model selection; selection criteria; pet studies

Journal Title: EJNMMI Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.