PurposeTo describe characteristics of choroidal osteomas (CO), using ocular ultrasound, fluorescein angiography, ultra-widefield retinal imaging, ultra-widefield autofluorescence, optical coherence tomography, enhanced-depth-imaging OCT, and OCT angiography (OCT-A).MethodsRetrospective, observational case series study.… Click to show full abstract
PurposeTo describe characteristics of choroidal osteomas (CO), using ocular ultrasound, fluorescein angiography, ultra-widefield retinal imaging, ultra-widefield autofluorescence, optical coherence tomography, enhanced-depth-imaging OCT, and OCT angiography (OCT-A).MethodsRetrospective, observational case series study. Clinical records from patients with diagnosis of CO who underwent complete imaging evaluation were analyzed.ResultsSixteen eyes from 11 patients were included. Mean patient age was 33.4 years (range 20–61), 72.7% were female, 100% were Hispanic, and 54.5% had unilateral CO. Median visual acuity was 20/150 (range 20/20–2000). CO was completely calcified in 25%, partially decalcified in 50%, and decalcified in 25%. Other features included choroidal neovascularization (18.75%), focal choroidal excavation (12.5%), choroidal depression associated to decalcification (18.75%), thinning of outer retina and photoreceptor layers over decalcified tumor (75%). Decreased fluorescence on FAF was observed in decalcified regions while relatively preserved fluorescence was observed in calcified regions.ConclusionsNowadays, diagnostic tests provide important information about each stage of choroidal osteoma. Progressive decalcification of the tumor might have a common pathogenic role for development of FCE or choroidal depression. OCT-A/FA proved to be valuable tools for detection of CNV in patients with CO.
               
Click one of the above tabs to view related content.