LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antibacterial effect of Ishige okamurae extract against cutaneous bacterial pathogens and its synergistic antibacterial effect against Pseudomonas aeruginosa

Photo from wikipedia

BackgroundCutaneous bacterial pathogens including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Propionibacterium acnes are often involved in acne vulgaris. The currently available therapeutic option for these skin pathogens is an… Click to show full abstract

BackgroundCutaneous bacterial pathogens including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Propionibacterium acnes are often involved in acne vulgaris. The currently available therapeutic option for these skin pathogens is an antibiotic treatment, resulting in the emergence of antibiotic-resistant bacteria. The objective of this study was to discover an alternative antibacterial agent with lower side effect from marine algae.ResultsThe ethanolic extract of edible brown algae Ishige okamurae exhibits potent antibacterial activity against cutaneous bacterial pathogens. Among the ethanol soluble fractions, the n-hexane (Hexane)-soluble fraction exhibited the strongest antibacterial activity against the pathogens with MIC values ranging 64 to 512 μg/mL and with minimum bactericidal concentration values ranging 256 to 2048 μg/mL. Furthermore, the combination with Hexane fraction and antibiotics (ceftazidime, ciprofloxacin, and meropenem) exhibited synergistic effect.ConclusionThis study revealed that the I. okamurae extract exhibited a synergistic antibacterial effect against acne-related cutaneous bacterial pathogens acquired antibiotic resistant. Thus, the results of the present study suggested that the edible seaweed extract will be a promising antibacterial therapeutic agent against antibiotic-human skin pathogens and its infections.

Keywords: pseudomonas aeruginosa; cutaneous bacterial; effect; bacterial pathogens; ishige okamurae; antibacterial effect

Journal Title: Fisheries and Aquatic Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.