LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bone Strain Index predicts fragility fracture in osteoporotic women: an artificial intelligence-based study

Photo by otto_norin from unsplash

Background We applied an artificial intelligence-based model to predict fragility fractures in postmenopausal women, using different dual-energy x-ray absorptiometry (DXA) parameters. Methods One hundred seventy-four postmenopausal women without vertebral fractures… Click to show full abstract

Background We applied an artificial intelligence-based model to predict fragility fractures in postmenopausal women, using different dual-energy x-ray absorptiometry (DXA) parameters. Methods One hundred seventy-four postmenopausal women without vertebral fractures (VFs) at baseline (mean age 66.3 ± 9.8) were retrospectively evaluated. Data has been collected from September 2010 to August 2018. All subjects performed a spine x-ray to assess VFs, together with lumbar and femoral DXA for bone mineral density (BMD) and the bone strain index (BSI) evaluation. Follow-up exams were performed after 3.34 ± 1.91 years. Considering the occurrence of new VFs at follow-up, two groups were created: fractured versus not-fractured. We applied an artificial neural network (ANN) analysis with a predictive tool (TWIST system) to select relevant input data from a list of 13 variables including BMD and BSI. A semantic connectivity map was built to analyse the connections among variables within the groups. For group comparisons, an independent-samples t -test was used; variables were expressed as mean ± standard deviation. Results For each patient, we evaluated a total of n = 6 exams. At follow-up, n = 69 (39.6%) women developed a VF. ANNs reached a predictive accuracy of 79.56% within the training testing procedure, with a sensitivity of 80.93% and a specificity of 78.18%. The semantic connectivity map showed that a low BSI at the total femur is connected to the absence of VFs. Conclusion We found a high performance of ANN analysis in predicting the occurrence of VFs. Femoral BSI appears as a useful DXA index to identify patients at lower risk for lumbar VFs.

Keywords: index; bone strain; strain index; bone; intelligence based; artificial intelligence

Journal Title: European Radiology Experimental
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.