LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of salinity on the dimethylsulphoniopropionate production from Prymnesium simplex

Photo from wikipedia

Dimethylsulphoniopropionate (DMSP) is a tertiary sulphonium compound which has received a considerable attention over recent years for acting as a principal intermediate in the production of dimethylsulphide, which is mostly… Click to show full abstract

Dimethylsulphoniopropionate (DMSP) is a tertiary sulphonium compound which has received a considerable attention over recent years for acting as a principal intermediate in the production of dimethylsulphide, which is mostly noted as odour causing substance and it acts as a potential key player for climate regulation. The synthesis of DMSP is confined to some species of microalgae especially, prymnesiophytes and dinophytes and its concentration level varies with some environmental factors. In this context, this research work applies an experimental approach to assessing the production rate of DMSP under varying salinity (28, 30, 32 PSU) across distinctive growth phases. For this purpose, estuarine isolated microalgae, Prymnesium simplex (prymnesiophyceae) was selected as a model organism. The results showed that the growth rate response of P. simplex was significantly reduced at lower salinity (28 and 30 PSU) compared to higher salinity in this range (32 PSU). The concentration of DMSP and particulate fraction of DMSP was also elevated at higher salinity in the exponential phase of growth and lower at lower salinity. In contrast, the maximum production of dissolved DMSP was seen at lower salinity. Essentially research is to determine a maximum contribution of the regionally important prymnesiophyte family in the process of biogeochemical sulphur cycling.

Keywords: dimethylsulphoniopropionate; dmsp; production; prymnesium simplex; salinity

Journal Title: Sustainable Environment Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.