Broadening access to science, technology, engineering, and mathematics (STEM) professions through the provision of early-career research experiences for a wide range of demographic groups is important for the diversification of… Click to show full abstract
Broadening access to science, technology, engineering, and mathematics (STEM) professions through the provision of early-career research experiences for a wide range of demographic groups is important for the diversification of the STEM workforce. The size and diversity of the community college system make it a prime educational site for achieving this aim. However, some evidence shows that women and Black, Latinx, and Native American student groups have been hindered in STEM at the community college level. One option for enhancing persistence in STEM is to incorporate the course-based research experiences (CREs) into the curriculum as a replacement for the prevalent traditional laboratory. This can be achieved through the integration of community colleges within extant, multi-institutional CREs such as the SEA-PHAGES program. Using a propensity score–matching technique, students in a CRE and traditional laboratory were compared on a range of psychosocial variables (project ownership, self-efficacy, science identity, scientific community values, and networking). Results revealed higher ratings for women and persons excluded because of their ethnicity or race (PEERs) in the SEA-PHAGES program on important predictors of persistence such as project ownership and science identity. This suggests that the usage of CREs at community colleges could have positive effects in addressing the gender gap for women and enhance inclusiveness for PEER students in STEM.
               
Click one of the above tabs to view related content.