LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prestack correlative least-squares reverse time migration

ABSTRACTIn the correlative least-squares reverse time migration (CLSRTM) scheme, a stacked image is updated using a gradient-based inversion algorithm. However, CLSRTM experiences the incoherent stacking of different shots during each… Click to show full abstract

ABSTRACTIn the correlative least-squares reverse time migration (CLSRTM) scheme, a stacked image is updated using a gradient-based inversion algorithm. However, CLSRTM experiences the incoherent stacking of different shots during each iteration due to the use of an imperfect velocity, which leads to image smearing. To reduce the sensitivity to velocity errors, we have developed prestack correlative least-squares reverse time migration (PCLSRTM), in which a gradient descent algorithm using a newly defined initial image and an efficiently defined analytical step length is developed to separately seek the optimal image for each shot gather before the final stacking. Furthermore, a weighted objective function is also designed for PCLSRTM, so that the data-domain gradient can avoid a strong truncation effect. Numerical experiments on a three-layer model as well as a marine synthetic and a field data set reveal the merits of PCLSRTM. In the presence of velocity errors, PCLSRTM shows better convergence and provi...

Keywords: correlative least; least squares; reverse time; squares reverse; time migration

Journal Title: Geophysics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.