ABSTRACTSeismic coherence is widely used in seismic interpretation and reservoir characterization to highlight (with low values) faults and stratigraphic features from a seismic image. A coherence image can be computed… Click to show full abstract
ABSTRACTSeismic coherence is widely used in seismic interpretation and reservoir characterization to highlight (with low values) faults and stratigraphic features from a seismic image. A coherence image can be computed from the eigenvalues of conventional structure tenors, which are outer products of gradients of a seismic image. I have developed a simple but effective method to improve such a coherence image by using directional structure tensors, which are different from the conventional structure tensors in only two aspects. First, instead of using image gradients with vertical and horizontal derivatives, I use directional derivatives, computed in directions perpendicular and parallel to seismic structures (reflectors), to construct directional structure tensors. With these directional derivatives, lateral seismic discontinuities, especially those subtle stratigraphic features aligned within dipping structures, can be better captured in the structure tensors. Second, instead of applying Gaussian smooth...
               
Click one of the above tabs to view related content.